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ABSTRACT 

A method of calculation has been given for the determination of solution and reaction 
heats in a constant-environment calorimeter. 

Calculation of a correction term for the temperature change connected with the heat 
exchange of the vessel with the surroundings is the focus of this work. 

An electrical calibration based on the instantaneous power allows one to neglect the 
calibration time. 

The choice of the K/C coefficient is fundamental for a correct interpretation of the 
thermogram. 

INTRODUCTION 

The rapid growth of thermal analysis during the past 30 years has created 
a number of new techniques (TG, DTG, DTA, DSC) for solid-state investi- 
gations [1,2]. 

In spite of this, the calorimetric solution technique still holds considerable 
importance in a wide range of applications (chemical, biological reactions, 
etc.). It is also possible, by using solution and reaction calorimeters, to study 
solid-state reactions [3,4]. 

Some commercial calorimeters (Tronac, LKB) can be used for a number 
of purposes: reaction, solution, titration, flow, batch calorimeters. 

The solution calorimeters are generally divided between adiabatic and 
constant-environment temperature calorimeters. 

The difference between them lies in the heat loss shown by the latter. 
The heat exchange with the surroundings follows Newton’s cooling law 

Q = Z+T- T,)dt (1) 

where t denotes time, T the temperature of the outer surface of the 
calorimeter, T, the temperature of its thermal environment and K a leakage 
constant. 
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Fig. 1. Correction for the heat leaks and graphical extrapolation for a constant-environment 
temperature calorimeter by using the Dickinson method. 

One of the most useful methods for evaluating the corrected temperature 
change for this type of calorimeter is the Dickinson method [5-S]. In this 
method the observed, ATobs, temperature change can be corrected by means 
of the equation 

(2) 

where T, and Tl are the temperatures at times t, and t, in the latter and 
former parts of the calorimetric experiment when the temperature is drifting 
towards the steady-state temperature, T,. A time, t,, between t, and t, is 
chosen (Fig. 1) so that 

/“(T- T,)dt +lf2(T- T,)dt = 0 
‘I It 

The correction term can also be written as 

(3) 

K/Cj+“( T - T,)dt = - (dT/dt),,( t, - t,) + (dT/dt),,( t, - fn) 
II 

(4 
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so that the values of the slope dT/dt at times t, and t2 give the (values of 
the) correction term. If the former and latter parts of the curve can be 
replaced by straight lines (Fig. 1) the correction term may be written as 
(T, - Tl) = TA - TB. 

The extrapolation is practically carried out using the time for 63% of the 
ATobs [8]. Generally, this method is advantageous in that it allows one to 
avoid calculation of the integral. In the simpler form there is a graphical 
procedure which, on the other hand, should not be used for reaction times 
longer than 5 min. 

For the latter, the equations [6,7] of the Regnault-Pfaundler method can 

be used 

AT,,,,=AT,,,-[g,-K/C(T,- T)]AT 
AT,,,,=AT,,,-[g,-K/C(T,- T,)]AT (5) 
where g, and g, are, respectively, the slopes at initial and final times, K the 
calorimetric constant, T, the mean temperature, and T, and T, the initial 
and final temperatures respectively, and C the heat capacity. We think that 
the use of a microcomputer makes a fast calculation of the integral of the 
correction term in eqn. (2) possible. 

It is the aim of this work to present a calculation method which is more 
flexible (and personal) and also useful for different calorimeters and reac- 
tions types. 

METHOD AND CALCULATION 

The calorimeter considered here is of the “isothermal-jacket” type. During 
an experiment with it, there will be some heat exchange between the 
calorimeter and its isothermal surroundings. 

As previously seen [l] the heat exchange with the surroundings follows 
Newton’s cooling law 

Q=K/(T- T,)dt 

where T is the outer surface of the reaction vessel, T, is the temperature of 
the surrounding thermostatic bath (the jacket temperature) and K the 
calorimeter leakage constant. 

Although the heat exchanged is a small proportion of the reaction heat, it 
must, however, be calculated. The heat exchanged is a function of heating by 
stirring, of resistance heating across the thermistor, and of heat leaks (heat 
losses by conduction, radiation, convection and evaporation). The first two 
heat sources can be eliminated, by substituting the temperature T, with the 
constant temperature T,, to which the calorimeter vessel will approach after 
a very long time. During this last, the “jacket temperature” was to be 
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Fig. 2. Temperature.-t ime curves for exothermal real and ideal adiabatic exothermal reactions. 

constant and the stirrer and the current supply of the thermistor of the 
Wheatstone bridge were to be working. 

When a chemical reaction of electrical calibration take place in the 
calorimeter vessel, the temperature of the vessel will be modified and will 
display a behaviour like that of Fig. 2 (full line) in which A-B is a linear 
behaviour due to the fact that the calorimetric system has reached thermal 
equilibrium. The reaction is initiated at B and is complete before point C. 
B-C is the reaction period. After the time t~ the temperature drifts towards 
T~ with an exponential trend. Let us consider what the temperature change 
~T~~ab would have been ir the calorimeter had behaved as an adiabatic one 
throughout the reaction (dashed line in Fig. 2). 

By knowing A T~,db and the heat capacity of the adiabatic system it is 
possible to calculate the heat adsorbed or developed during the reaction by 
using the equation 

Q = CAT (6) 

In the real trend with heat exchange between the vessel and the surround- 
ings, the adiabatic value will be given by the following reaction 

ZT~,~,~ = ZT,~,~ + ~Lo~~ (7) 

where A T~,,~, is the correction term which holds in view of the fact that 
during the reaction the vessel temperature changes by virtue of the heat 
exchange with the surroundings. Both terms of the right-hand side of eqn. (7) 
are a function of time. From eqns. (1) and (6) the following can be obtained 

~x<..~~-- ~ / c  f'(  < - < ) d ,  (8) 
"(|( 

where t 0 is the time at which the reaction is initiated, t any time after the 
end of the reaction, and T, is the temperature trend inside the vessel a s a  
function of the time. It is noteworthy that eqn. (8) is only useful if the heat 
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Fig. 3. Transition periods of the heat conduction by wrtue of the resistance variation. 

capacity displays a small change between the start and the end of the 
reaction. This only occurs if the system is in thermal equilibrium during the 
initial and final periods, and there is no heat effect of after-reaction. 

The required values for a correct interpretation of the thermogram are 
those of the constants K and C and of the quantity 7; - T,. 

CALCULATION OF HEAT CAPACITY 

The method usually used for determining the heat capacity is based on the 
supply of a known amount of energy during the time t across the heater 
resistance R. From the resulting temperature change, AT, and using eqn. (6) 
it is possible to calculate C. This method has two drawbacks: 

(1) the energy supplied in time t cannot be constant because the resistance 
values are a function of time; 

(2) one must wait for the transition periods of the heat conduction to be 
completed (Fig. 3) before measuring the temperature change, AT. This 
requires longer measuring times which, in turn, oblige one to calculate, by 
means of the integral, the heat dissipated. 

If an infinitesimal range of time, dt, is considered, eqn. (6) becomes 

dQ = CdT (9) 

For each (at continuous running) dt infinitesimal time, dQ is equal to the 
instantaneous power (P) supplied minus the amount, dQ, of heat dissipated 
at temperature T 

dQ = Pcalibdt - K( T - T,)dt 

Dividing eqns. (9) and (10) for dt and equalizing one obtains 

CdT/dt = Pcallb - K(T- T,) 
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and again 

For calculating C, a measure of the instantaneous power (= I/I) through the 
calibration current, I, and the potential drop, V, of the resistance is 
sufficient. The change in temperature with respect to the equilibrium temper- 
ature. T,, and the slope of the thermogram are also required. 

DETERMINATION OF THE COEFFICIENT K/C 

Two ways can be considered which are conceptually equal but different 
from the computational point of view. In both cases the temperature of the 
vessel is different from T, and drifts towards the equilibrium temperature. 
Such a situation occurs after electrical calibration and after completion of 
the reaction. 

The first way of computing K/C may be realized bearing in mind that 
had the calorimeter been of the adiabatic type, the ATadb temperature 
variation with respect to T,( to) would have been equal to zero (Fig. 4). 

Thus, imposing this condition in eqn. (7) and writing AT,,,, by means of 
eqn. (8). one can obtain 

0 = AT,,,, + K/C/‘( 7; - T,)dt 
‘,I 

(13) 

T-To 

Ideal adlabatlc trend from T(to) 

to t time 

Fig. 4. Temperature-time curves for exothermal real and an ideal adiabatic exothermal 
reactions. 
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Thus, this way requires an integral for the K/C determination. In the second 
way too, the condition AT,,,, = -ATobs is imposed in eqn. (7) with AT,,,, 

calculated between a generic time, t,, and an infinite time, t,. 

To - T, = - K/C/“( T - T,)dt (15) 
1, 

Equation (15) provides a differential linear equation which, solved with its 
initial condition qtOj = To, gives the solution 

T- T, = (T’ _ T,)e-K/C(‘-rO) (16) 

This last shows that the temperature approaches T,, as time tends to 
infinity, with an exponential behaviour dependent on K/C. 

In practice, the second method allows a set of points taken during the 
cooling process to be interpolated with a least-squares analysis. The ex- 
ponential coefficient will be K/C. From eqn. (16) the K/C term may be 
obtained 

K/C = _ln CT- Tx)/(T, - L) 
(t-d 07) 

In eqn. (17), interpolation may be avoided and only two points can be 
considered. These, however, must be very precise. 

Further considerations can be made as regards eqn. (12) in which C is a 
function of K. This function could be taken away by putting eqns. (12) and 
(17) in a mathematical system. 

We prefer to change this as a function of K/C because this ratio may be 
calculated independently of the C values. 

It is then easily proved that eqn. (12) can be written in the form 

Pcalib 

‘= dT,dt+ K/C(T- T,) 

CONCLUSION 

(18) 

This method is useful for both a constant-environment temperature 
calorimeter and a quasi-adiabatic calorimeter. Therefore, in this case, the 
correction term K/C /,I( T - T,)dt approaches zero. 

A further advantage of the method resides in the fact that it is possible to 
choose a posteriori the end-point of the reaction. Such a point is defined as 
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that beyond which the AH values become nearly 
very small contribution of the correction term. 

constant, because of the 

IMPORTANCE OF A PROPER CHOICE OF THE K/C VALUE 

The value of the K/C coefficient is decisive for the correct calculation of 
the correction term. 

It is also possible to calculate two values for the K/C coefficient: one for 
the calibration cooling curve and another for the reaction curve. These 
values are tightly connected with one another. 

In order to obtain an effective term, the two K/C values must be very 
close. This occurs if the reaction is very fast, so that the stirring speed plays a 
fundamental role in this respect. 

Figure 5 shows how in a “fast” reaction the K/C value is closer to that of 
the cooling calibration curve because the integral of the correction term lies 
mostly in the reaction curve. 

For a “slow” reaction (Fig. 6) the K/C value will be closer to that of the 
cooling reaction curve. However, in this case it is very hard to read K/C on 
“pure” cooling. Indeed, for the farthest points, the mathematical errors 
provided by the correction term are larger than the corresponding heats. 
Furthermore, after a long time the thermal equilibrium conditions would be 
changed so that the relation K/C /,t( T - T,)dt = -ATobs would not be 
effective. For these reasons in the slow curve, misleading values of K/C 
could be read. This is also true for the K/C values of the calibration cooling 

T-T, 
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5. Temperature-time curve for a fast exothermal reaction. 
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Fig. 6. Temperature-time curve for a slow exothermal reactione 

curve if the system is not in perfect thermal equilibrium. We think that the 
two values of K/C must differ by no more than 4-5%. In this case the 
correlation between C and dT/dt (eqn. 18) hinders large errors. 

The data output can be recorded on a strip-chart recorder and subse- 
quently inserted into a program to be run on a microcomputer. This last can 
be directly interfaced to a voltmeter reading the V values in a programmed 
sequence. This set-up will be the subject of a further work. 
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